
UA3 40 F AN8 REPORT AND PSR MANUL) COL ORADO UNIV AT 1//
BOUDER DEP OCMPUTR SINC GAM C MM JN 83
CU-C-48-83 AR 0 74U 14MADOAG29-8-G0046

UNCLASSFE A 9/2 NI

EMMhEEEEImhIM
EEELElElllEEflflflflN

1111 -2 12.2

40

i:"

1111.4 1.

MICROCOPY RESOLUTION TEST CHART

6IONA. VR(AU OF STAN0IMOS -63- A

I4

• -'."- .-

UNIVERSITY OF COLORADO

FSCAN-83 Report and User's Manual

by

Geoffrey M. Clemm
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-248-83 January 1983
) ' " '. , i.u% •). ! , - - 7- -

DEPARTMENT OF COMPUTER SCIENCE

CAMPUS BOX 430
UNIVERSITY OF COLORADO, BOULDER
BOULDER, COLORADO 80309

Technical Report

DTIC

f. ~or .j U1fw% lci tsE
., sep ms is

FSCAN-83 Report and User's Manual

by

Geoffrey M. Clemm
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-248-83 January 1983

INTERIM TECHNICAL REPORT
U. S. ARMY RESEARCH OFFICE

CONTRACT NO. DAAG29-78-G-0046

Approved for public release; DT Oi
Distribution Unlimited (11ar |-ECTED

SEP

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT

OF THE ARMY POSITION, UNLESS SO
DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

I/

We acknowledge U. S. Army Research support
under contract no. DAAG29-78-G-0046

and National Science Foundation support
under grant no. MCS77-02194

.. &

J __ -- ~

SECURITY CLASSIFICATION Of THIS PAGE r%%Whte Fr1.itered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPRTOCMENATONAG BEFORE COMPLETINGFORM

1. REORT i~mirft TGOVYAC4"q No. 3 5 CET. CATALOG NUMBER

4. TITLE (end Subuil.f) S. TYPE OF REPORT & PERIOD COVERED]

FSCAN-83 Report and User's Manual Technical

6. PER FORMING ORG. REPORT NUMBER

7. AUTHOR(eii 8. CONTRACT OR GRANT NUMBER()

Geoffrey M. (.lenin DAAG29 78 G 004.6

9. PERFORMING ORGANIZATION NAME AND ADDRESS SO. PROGRAM ELEMENT. PROJECT, TASK

University of Colorado AREA A WORK UNIT NUMBERS

Boulder, CO 80309

11. CONTROLLING OFFICE NAME AND) ADDRESS 12. REPORT DATE

U. S. A'rmy Research Office Jan 83
Post Offico B~ox 12211 13 NUMBER OF PAGES
Research Triangle Park, NC 27709 _____ 28

14. MONITORING AGENCY NAME & AOORESS(8f different from. Controling Offiee) IS. SECURITY CLASS. (of this report)

i SCHEDULE

19 DISTRIBUTION STATEME14T (of &ile Roport)

Approve~d for public release-, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obeitted entered in Block 20, If different from Report)

III. SUPPL NENT A14 H NT I

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
Position, dolicy, or decision, unless so designated by other documentation

It. KEY WORDS (ContIinue on reverse side It necessry end identify by block number)

cpmputer Proqrams
programmning languages
compilers
object code

2.A@6rRACr (ICnitbue set reiwomneE filt neewegely, m euJ f? by bleck n bJ
FSCAN Is a language for specifying the lexical analysis of programs written in
any current programmning languaqe, including FORTRAN. This report describes the
FSCAN language, a compiler for the language, and an interpreter for the resuitinc
object code. The Interpreted object code forms an efficient lexical analyzer th .t
takes as input a stream of characters and produces as output a stream of tokens
(lexical units). The compiler ad Interpreter are designed for portability. Bot
are written In ANSI FORTRN''(l966p supplemented by a small number of short machi
dependent subroutines. Included Is an FSCAN proqram descrlbIns a FORTRAN- lexi al

0 FD~ Dow -,o or UNLSSFE Sanalyzer.

1 Q0 09 20 0 6 SECURITY CLASSIFICATION OFP TNIS PAGE (Whem Des Entered)

7-
Z~

Abstract

FSCAN is a language for specifying the lexical analysis
of programs written in any current programming language,
including FORTRAN. This report describes the FSCAN
language, a compiler for the language, and an interpreter
for the resulting object code. The interpreted object code
forms an efficient lexical analyzer that takes as input a
stream of characters and produces as output a stream of
tokens (lexical units). The compiler and interpreter are
designed for portability. Both are written in ANSI FORTRAN
(1966) supplemented y a small number of short machine
dependent subroutines. Included is an FSCAN program
describing a FORTRAN-77 lexical analyzer.

Accession For

DTIC T7.

;u ti i tio n __ __ _By
Distribution/

Availability Codes
Avail and/or

ist Special

I

1. INTRODUCTION
The first phase of the analysis of a computer program

is "lexical analysis" or "scanning", where the source text
is broken up into the words or "tokens" of the programming
language. For most languages this is a relatively
straightforward task, as spaces or some other delimiter are
required at any token separation points that could be
ambiguous. Unfortunately the ANSI FORTRAN standards [1,2]
specify that spaces for the most part are meaningless in
FORTRAN programs. This creates several ambiguous situations
that cannot without backtracking be resolved by a left-to-
right scan with single character look-ahead of the source
text. For example, if the string "DO" has been read, it is
unclear whether the scan has reached the end of the keyword,
"DO", in a statement such as

DO 10 I = 1, 3

or whether the scan is in the middle of a variable name in a
statement such as

DOOI = 1 + X

The problem of the lexical analysis of FORTRAN is
further complicated by the existence of numerous dialects
and extensions of FORTRAN that vary according to the
installation and particular compiler in use. The problem is
therefore most acute for a system such as the DAVE software
validation system [3] where it is desirable that all
variants of FORTRAN be readable. Ordinarily this would
entail recoding the lexical analyzer module for each new
FORTRAN variant, in addition to maintaining a library of
already coded lexical analyzer modules.

To minimize these tasks, the FSCAN Lexical Analyzer
Generating System was developed. The FSCAN system consists
of a language, a compiler for the language, and an
interpreter for the object code produced by the FSCAN
compiler. The FSCAN language and the LR style processing
were initially specified by DeRemer [4].

-- 2

2. THE LANGUAGE

The FSCAN language (henceforth referred to simply as
"FSCAN") was designed to allow the specification of a
complex lexical analyzer, such as that required by FORTRAN,
in as concise and understandable a manner as possible.

An FSCAN program consists of the keyword, TOKENS,
followed by a list of the tokens to be generated, followed
by a single FSCAN procedure (within which may be defined
additional procedures) terminated by a period. An FSCAN
procedure specifies in an extended BNF-style notation a
grammar that describes a left-to-right pass over the source
text. During this pass each character is examined and
depending on the character and the current state of the
lexical analyzer, one of the following actions is taken:

1. mark the character as kept or deleted and move ahead to
the next character

2. call an FSCAN procedure

3. exit an FSCAN procedure

4. exit an FSCAN procedure and backup to the state and
location in the source text at which the procedure was
called

5. perform a specific token-action

The compiler verifies that an FSCAN program specifies a
aeterministic lexical analyzer, i.e., that for any state of
the analyzer, the next action to be performed can be
uniquely determined from the character currently being
examined.

-3-

2.1. Procedures

Syntax

An FSCAN procedure or "scanner" consists of a sequence
of grammatical rules delimited by the keywords, 'SCANNER'
and 'END'. Following each of these keywords is the goal
symbol for the sequence of rules; this also serves as the
name of the procedure. The redundant repetition of the goal
symbol is used by the FSCAN compiler to ensure that the
'SCANNER' - 'END' pairs are matched in the way the
programmer intended. Each rule in the sequence is
terminated by a semicolon.

Example

SCANNER DIG:
rule 1; rule 2; ... rule n;
END DIG -

Semantics

One of the rules must be a definition for the goal
symbol of the procedure. This rule specifies the finite-
state stack-automaton scan of the source text which is
performed when the procedure is called. The scan is
performed in a longest match manner; namely, given the
choice between finishing and scanning more of the source
text, the procedure will always continue scanning.

!, 0iI
• L > -

-4-

2.2. Rules

An FSCAN rule is either a macro rule or a procedure
rule. The scope of rule definitions corresponds to that of
ALGOL.

2.2.1. Macro Rules

As in a BNF rule, the left side of a macro rule is a
nonterminal while the right side is a sequence of
alternatives. Each alternative may have an associated
token-action, and an alternative, rather than being only a
sequence of terminals and nonterminals, may contain any of a
variety of operators, in the style of regular expressions,
as well as parentheses for grouping.

Syntax

Each alternative is preceded by a single-right-arrow
(-'). The optional token-action is placed at the end of

the corresponding alternative and is preceded by a double-
right-arrow (=>).

Example

TEXT -> fscanreg exprn_1 => actionI
-> fscanregexprn_2
-> fscanregexprn 3 => action 2

Semantics

A macro rule is a standard macro in that the right part
of the rule textually replaces any occurrence of the left
part, when the occurrence is in an FSCAN regular expression
within the scope of the macro rule definition. A macro rule
cannot be recursively defined except through a procedure
rule call. Thus in the above example, the nonterminal,
TEXT, could not appear in any of the three FSCAN regular
expressions in the right part, but the following
construction would be legal:

TEXTI -> fscan reg exprn containing_TEXT2;

SCANNER TEXT2:
TEXT2 -> fscan reg_exprncontaining_TEXTi;
IND TEXT2;

This is legal since execution time recursion is implemented,
whereas recursively defined macros without intervening
procedure rule calls would imply infinite textual expansion
of the macro.

01

5

During execution of the interpreter, after an
alternative has been successfully matched with the source
text, the corresponding token-action, if any, is performed.

2.2.2. Procedure Rule

Syntax

A procedure rule is simply an FSCAN procedure.

Semantics

During execution of the interpreter, when a nonterminal
associated with a procedure rule is to be matched with the
source text, the appropriate procedure is called.

i

6

2.3. FSCAN Regular Expressions (abbreviation: FRE)

2.3.1. Atomic units

The atomic units of an FRE are terminals, integers, and
nonterminals.

2.3.1.1. Terminals

Syntax

A terminal is either a "kept-string" or a "deleted-
string." A kept-string is a sequence of characters enclosed
in double quotes (") while a deleted-string is a sequence of
characters enclosed in single quotes ('). If a sharp (#)
appears in the string, the sharp is ignored and the
immediately following character is treated as the next
character of the string, even if that character is a
double-quote, or a sharp. For terminals the strings are
restricted to be of length zero, length one, or the string
of length three, EOL. A length zero string matches no
character, a length one string matches the character of that
string, and EOL represents the end-of-line character.

Examples

.... is I 1A' ";" 11 1## "EOL"1 1EOL1

Semantics

The character of the terminal is compared with the next
character of the source text. If they match, the source
text character is marked as "kept" or "deleted", depending
on whether the terminal is a kept-string or a deleted-
string, and then the next character in the source text is
examined.

2.3.1.2. Nonterminals

Syntax

A nonterminal is a sequence of letters and digits, the
first of which is a letter.

Examples

A TEMP TEMPI B3B

I.

-7-

Semantics

Nonterminals can name macro rules or procedure rules.
As mentioned earlier, macro rule names are textually
replaced by the right part of the macro defining rule, for
which the semantics have been described. When the
nonterminal names a procedure, it indicates that the
appropriate procedure is to be called during execution.

2.3.1.3. Integers

Syntax

An integer is a string of digits.

Examples

54 0 05 1234567890

Semantics

Integers have their usual meaning.

2.3.2. Operations

The operations used to compose FSCAN regular
expressions are divided into two types: basic operations
and extenued operations. Let A, B, C be FRE's, let a, b, c
be characters, and let n be a non-negative integer.

2.3.2.1. Basic Operations

Syntax

Alternation : A / B / C /

Concatenation : A B C .

Repetition : A*

Negation : NOT A

Example

NOT ("I,"/";/ "?) 'X'*

Semantics

An alternation successfully matches the source text if
any of its alternates do. A concatenation matches the

-8-

source text if its operands sequentially match the source
text. A repetition matches an arbitrary number (possibly
zero) of its operand with the source text. The operand of a
negation is restricted to regular expressions that specify a
set of characters, all of which are kept-strings or all of
which are deleted-strings. A negation then matches any
character that is not in its operand's character set. If
matched, a source character is marked as "kept" or "deleted"
if the operand character set consists of kept-strings or
deleted-strings, respectively.

2.3.2.2. Extended Operations

Syntax

<> : <abc...> = ('a' 'b' 'c' ...)

<<>> : <<abc... >> ("a" "b" #Ic" ...

+ : A+ = A A*

? A? =A/ ()

I A // B A (B A)*

ELSE : A ELSE B ELSE... aA / B /

: An A A ... A (n times)

A**(n) 2 A? A? .. A? (n times)

SA**() Z A*
~I

Restrictions: The operands of ELSE and the first operand of
** are restricted to being the names of procedures.

Semantics

The semantics of the extended operations are largely
determined by those of the basic operations by which they
are defined. The operators, ELSE and **, are only
approximately equivalent to their respective syntactic
expansions, because they possess the following additional
properties:

ELSE

The ELSE construct provides a backtrack feature where
if the first operand fails to successfully match a segment
of the source text, the second operand is tried on the same
segment, etc. Once the final operand is invoked, match
failure will cause standard error recovery, rather than the

...... -- '11 , III I .II

-9-

backtrack feature.

**n

The only distinction between **n and its syntactic
expansion occurs when the exponent, n, is zero. In this
case A**O matches the input stream only if A would match the
next character in the input stream. Since the exponent is
0, no characters are actually matched by A, only the check
is performed. This can be used to cause the success or
failure of a particular branch of the ELSE operator.

**(n)

The **(n) operator provides limited backup, in the
sense that, if less than n A's have been successfully
matched, the scan is backed up to the state at which the
last A (possibly no A's) has been successfully matched.

**()

The **() operator is the same as the **(n) operator
except that there is no limit to the number of A's that can
be matched.

- -- -- ' - -

-10-

2.4. Token-Actions

Syntax

A token-action is a kept or deleted string followea by
a nonterminal in parentheses. Either the string or the
nonterminal in parentheses may be omitted.

Examples

"NAME"(KEYWORD) "STRING" (OPERATOR) 'BEGIN'

Semantics

A token-action generates a sequence of characters
consisting of all characters marked as kept since the last
token-action. The presence of a nonterminal in parentheses
indicates that this sequence of characters is to be
1screened" or rescanned by the procedure rule named by the
nonterminal. If the screening procedure completely
processes the characters without encountering any erroneous
or "unmatchable" characters, all actions generated during
the screening (including token-actions) are performed;
otherwise, all such actions are ignored and a token is
output. The string of the token-action names the type of
the token to be output. All such strings used by an FSCAN
program must be listed following the keyword, TOKENS, at the
beginning of the FSCAN program. During runtime, the
generation of the n'th token in this list is indicated by
the output of the integer n+l (the integer, 1, indicates
end-of-file).

If the string is omitted, the screening is
unconditionally performed with standard error recovery at
erroneous characters. If the nonterminal in parentheses is

omitted the token is unconditionally output, without any
preceding attempt to screen.

2.4.1. End-of-File Token-Action

A special token is reserved to incdicate the end of
scanner processing. After this token has been generated,
all following requests for tokens from the scanner will
result in Lhe return of this special token. The procedure
that is the FSCAN program, i.e.,

TOKENS ...

SCANNER LEXANLYZ
LEXANLYZ -
END LEXANLYZ.

is conceptually embedded in the following context:

A .A

j - 11 -

TOKENS EOFTOK
SCANNER DEFAULT:

DEFAULT -> LEXANLYZ EOF
EOF -> () => 'EOFTOK' ;
SCANNER LEXANLYZ ... END LEXANLYZ
END DEFAULT.

EOFTOK is therefore predefined in all FSCAN programs and is
indicated during runtime by the output of the integer, 1.

2.4.2. Evaluation Token-Action

The FORTRAN Hollerith constant requires special
treatment by the lexical analyzer. In particular, the
lexical analyzer must be driven by a numeric value contained
in the source text. To provide this function, a special
"evaluate" token-action is included in FSCAN.

Syntax

The normal screening nonterminal is replaced by an
equals sign.

Examples

(=) "COUNT"(=)

Semantics

The sequence of characters generated by the token
action are evaluated as a positive decimal integer. The
compiler ensures that only digits can be marked as kept in
an alternative possessing an evaluate token-action. The
value resulting from this evaluation can then be referenced
by the FSCAN program by using the name of the rule
containing the evaluate token-action as an exponent in the
** or *? operators. The value of such a "variable" exponent
is always the result of the most recent evaluate token-
action performed by the rule named by the variable.

• .i -- - U I: -: "

- 12 -

3. THE COMPILER

The FSCAN compiler consists of 5500 lines of standard
ANSI FORTRAN code. In addition, there is a group of short
(1 to 5 lines) routines that are machine dependent. (See
Appendix A).

The compiler takes one input file containing an FSCAN
program and produces three output files - a listing file
annotated with the number of the first token on each line, a
tables file containing the generated object code, and an
errors file describing any errors in the input. The files
are associated with the FORTRAN logical unit numbers five,
six, seven, and zero respectively.

The compiler contains eight processing modules that
perform the following tasks:

3.1. Lexical Analysis, Syntactic Analysis, and Tree
Construction

The input is read and all syntactic errors are
reported. If the input is syntactically correct, a parse
tree corresponding to the input grammar is built, otherwise
processing stops after the entire input has been scanned for
syntactic correctness.

3.2. Symbol Identification

Each applied occurrence of a symbol (i.e., in the right
sides of rules) is associated with its defining occurrence
(i.e., the rule in which that symbol was defined). In
addition the following errors are detected and reported:

(1) A scanner's beginning goal symbol is different from its
ending goal symbol (probably due to improper scanner
nesting that could not be detected by the parser).

(2) A nonterminal is defined by two different rules within

the same scanner.

(3) No rule defines the goal symbol of a scanner.

(4) A variable exponent is defined in something other than
a rule with an evaluate token-action.

(5) A symbol is used that has not been defined by any rule.

(6) A symbol that is an alternative of an ELSE, a screening
action, or the base of ** or *?, is defined in

b S

-13-

something other than a procedure rule.

If any of the above errors occur, processing is halted
following the completion of the symbol identification phase.

3.3. Character Set Creation

The terminals are converted to a set containing the
appropriate character and, where feasible, set operations
corresponding to FSCAN operators are performed (i.e., */'

and 'NOT') and the operator node is replaced by the
resulting set. In addition, by propagating attribute
vectors down and then back up the tree, the following errors
are detected and reported:

(1) A macro rule is recursively defined.

(2) A variable exponent is used before the variable could
have received a value.

(3) A 'NOT' operator is applied to something other than a
character set.

(4) A terminal string other than EOL consists of more than
one character.

(5) A rule containing a kept character is used in a context
where the kept character is associated with no token.

(6) A rule generating a token is used in a context where
another token is currently being built.

(7) A rule containing untokenized kept characters and a
rule producing tokens appear in the same context
(either error 5 or error 6).

(8) Non-digit characters are kept in a context where an
evaluate token-action could occur.

(9) A token type is used without being declared in the
TOKENS section.

(10) A token type is multiply declared in the TOKENS
section.

(11) A token type is declared to be deleted(kept), but used
as kept(deleted).

If any of the above errors occur, processing is halted
following the completion of the character set creationpase.

_ ____

-14-

3.4. Tree Threading

The tree is converted to a directed acyclic graph by
the addition of directed edges. This additional linkage
allows the LR processing to be performed efficiently.

3.5. Code Generation

The code for a lexical analyzer that will perform the
analysis specified by the user's grammar is generated. This
code is written out to a scratch file as it is produced.

3.6. Code Verification

The parse tree is purged and the code from the scratch
file is read into memory. It is then verified that the code
specifies a deterministic machine that will halt on finite
input. If the grammar specified nondeterministic or non-
halting behavior, this is reported as an error, and
processing will halt following completion of the code
verification phase. A nondeterminism error or "action
conflict" is reported by listing the group of actions that,
according to the grammar, would have to be performed
concurrently or nondeterministically. A non-halting error
is reported by indicating the action that, for certain
input, would be repetitively executed infinitely.

3.7. Code Assembly and Optimization

Address locations are compiled and assembled into the
code. Also the code is compacted by collapsing equivalent
character sets into a single character set.

3.8. Code Output

The final code is output in the form of FORTRAN BLOCK
DATA subprograms and appropriate accessing functions.

-15-

4. THE OBJECT CODE INTERPRETER

The object code interpreter, in conjunction with the
object code produced by the FSCAN compiler, forms a lexical
analyzer that will process a stream of input characters and
produce a stream of lexical units (tokens) as specified by
the FSCAN program that was compiled. The interpreter is
written in standard ANSI FORTRAN. In addition there is a
group of short (I to 5 line) routines that are machine
dependent (see Appendix B).

4.1. Input Interface

The stream of input characters is obtained by the
interpreter through repeated calls to the user-supplied
routine, GETBUF. The subroutine, GETBUF, has one input
formal parameter, MBUFFR, and four output formal parameters,
BUFFER, LBUFFR, EOLFLG, and EOFFLG:

SUBROUTINE GETBUF (MBUFFR, BUFFER, LBUFFR, EOLFLG, EOFFLG)
INTEGER MBUFFR, BUFFER, LBUFFR
LOGICAL EOLFLG, EOFFLG
DIMENS ION BUFFER(MBUFFR)

MBUFFR specifies the maximum number of characters that
should be placed in BUFFER, one character per array element.

LBUFFR specifies the number of characters that were
placed in BUFFER. EOLFLG is set to be true iff an EOL
character is to be appended to the stream of characters
being returned in BUFFER. This EOL character is referenced
in an FSCAN program by the terminal 'EOL' or "EOL". EOFFLG
is set to be true iff there are no more characters to be
sent. When EOFFLG is true, the values of BUFFER, LBUFFR, and
EOLFLG are ignored.

4.2. Output Interface

The interpreter must be initialized by a call to the
subroutine INISCN. Following this initialization, the
stream of tokens is obtained by making successive calls to
the subroutine, SCANNR. SCANNR has four output parameters,
all appearing in the labeled common block, /TOKENC/-

SUBROUTINE SCANNR
COMMON/TOKENC/TKNTYP, KTFLAG, ITKNCH, TKNCHR(30)

, '
-- . - -- - --- -.. <

-16-

TKNTYP is an integer variable indicating the type of
the token, KTFLAG is a logical variable that is true for a
kept-token and false for deleted-token, ITKNCH is an integer
variable indicating the number of kept-characters in the
token, TKNCHR is an array containing the kept-characters
(one character per array element).

4.3. Errors Reported b the Interpreter

4.3.1. Recoverable Errors

The following recoverable errors are reported by the
lexical analyzer by generating a call of the form:

CALL SCNERR (i)

where i is an integer in the range, (U..10), indicating
which error occurred.

(1) Token is too long, i.e., the number of characters
marked as kept is larger than the size of the array,
TKNCHR. The default size of TKNCHR is 30. If longer
tokens are desired the interpreter would have to be
modified by increasing the size of TK1CHR and changing
the initialization of the variable MTKNCH to be the new
size.

*Recovery: The token is truncated on the right.

(2) Token contains erroneous characters. An erroneous
character is one that is not an element of the set of

* expected characters of the state of the interpreter at
the time the character was encountered. An erroneous
character is processed by the interpreter by skipping
over the erroneous character without changing the state
of the interpreter.

Recovery: Erroneous characters are marked as deleted.

(3) Token to be screened contains erroneous characters

Recovery: Erroneous characters are marked as deleted.

(4) Screening terminated with characters remaining in token
to be screened.

Recovery: The characters remaining in the token are
ignored.

-17-

(5) Erroneous characters occurred in token being screened,
and screening terminated at the end of the token while
skipping over erroneous characters.

Recovery: None necessary.

(6) End of input stream occurred prematurely.

Recovery: An EOFTOK token is generated.

(7) Erroneous characters occurred in input stream and end
of input stream occurred while skipping over erroneous
characters.

Recovery: An EOFTOK token is generated.

(8) End of token occurred prematurely while screening.

Recovery: Screening terminated and processing
continues.

(9) Erroneous characters occurred in input stream, and the
end of the characters read in by the most recent call
to GETBUF reached while skipping over erroneous
characters.

Recovery: the lexical analyzer is reset to its initial
state before the next call to GETBUF.

(10) The current call to GETBUF returns more characters than
there is room for in the internal character buffer of
the lexical analyzer.

Recovery: The lexical analyzer is reset to its initial
state and the previous contents of its internal buffer
is flushed. Note: It may be necessary to increase the
size of the internal buffer to prevent this error. See
fatal error six.

4.3.2. Fatal Errors

The following fatal errors are reported by the lexical
analyzer by generating a call of the form:

CALL FTLERR (i)

where i is an integer in the range, (1..4)

(1) The "call stack" overflowed.

To fix this error, the FSCAN program should be
rewritten to generate less procedure-call nesting at

I.
i V

- 18 -

run-time. Alternatively, the size of the array,
CSTACK, in the labeled common block, /CSTAKC/, must be
increased, and MCSTAC must be initialized in the block
data subprogram, SCANBD, to a value corresponding to
the new size of CSTACK.

(2) The "keep" stack overflowed.

To fix this error, the FSCAN program should be
rewritten to generate fewer tokens within the operands
of an ELSE construct or the operand of a ?*.
Alternatively, the size of the array, KSTACK, in the
labeled common block, /KSTAKC/, must be increased, and
MKSTAC must be initialized in the block data
subprogram, SCANBD, to a value corresponding to the new
size of KSTACK.

(3) Illegal action on call stack.

An internal error that should never occur.

(4) Error in backup.

An internal error that should never occur.

-19-

5. FSCAN-SUBSET OBJECT CODE INTERPRETER

For many lexical analyzers, the full power of FSCAN is
unnecessary. For these analyzers, a smaller and more
efficient interpreter is available. This interpreter can be
used on the object code produced from FSCAN programs that
satisfy the following restrictions:

- The operators, ELSE, **, and ?* may not be used.

- Nonterminal and evaluate token-actions may not be used.

- All characters of a token must occur in the characters
returned from a single call to GETBUF.

. Input Interface

See standard interpreter.

5.2. Output Interface

See standard interpreter.

5.3. Errors Reported b the Interpreter

5.3.1. Recoverable Errors

(1) Recoverable error 1 from standard interpreter.

(2) Recoverable error 2 from standard interpreter.

(3) Recoverable error 6 from standard interpreter.

(4) Token extends past end of the characters read in by the
last call to GETBUF.

Recovery: The lexical analyzer is reset to its initial
state and the current contents of BUFFER is flushed.

5.3.2. Fatal Errors

(1) Fatal error 1 from standard interpreter.

(2) Fatal error 2 from standard interpreter.

(3) Illegal action for the FSCAN-subset interpreter.

To fix this error, the FSCAN program should be

-20-

rewritten to satisfy the requirements of the FSCAN-
subset. Alternatively the regular interpreter must be
used instead of the subset interpreter.

(4) GETBUF returned too many characters.

To fix this error, the GETBUF routine should be
rewritten to return fewer than MBUFFR characters, (i.e.
MBUFFR > LBUFFR), where MBUFFR and LBUFFR are arguments
to the GETBUF routine.

I

-

-21-

Re ferences

[1] ANSI : FORTRAN. X3.9-1966, American National Standards
Institute 1966.

[2] ANSI : FORTRAN 77. X3.9-1978, American National
Standards Institute 1978.

[3] Osterweil, L. J.; ana Fosdick, L. D. "DAVE - a
validation, error detection and documentation system
for FORTRAN programs," Software Practice and
Experience.

[4] DeRemer, F., SVG Memos #69-72, ;76-77, #80, #83-84.
Dept. of Computer Science, University of Colorado at
Boulder, Boulder, Colorado, 1977.

22-

Appendix A:
Machine Dependencies in the FSCAN compiler

1. Machine Dependent Constants

1.1. NBTPWD

NBTPWD in /NBTPWC/ is the number of bits in a machine
word.

2. Machine Dependent Primitives

2.1. INTEGER FUNCTION INTGER (CHAR)

Input:
CHAR contains a character stored in 1H (or Al) format.

Result:
The ASCII code for the character, CHAR (an integer
between 0 and 127).

2.2. INTEGER FUNCTION CHRCTR (INT)

This is the inverse of the INTGER function.

2.3. INTEGER FUNCTION DIG (CrAR)

Input:
same as INTGER

Result:
If the character is a digit the resilt is tne integer
value of the digit (0-9); otherwise the result is -1.

2.4. INTEGEh FUNCTION 1AND (11,12)
- NTEGER FUNCTI0N IOR (Ii -,12-T

INTEGER FUNCTION INOT TI i-
These functions return the result of the bitwise

logical operation of AND, OR and NOT, respectively.

2.5. INTEGER FUNCTION HOLCHR (HCONST,ICHAR)

Input:
HCONST is a Hollerith constant of the form
nHc ic_2.. .c n where n is an unsigned positive integer
and c-i is a character, i-i..n. ICHAR is an integer
between 1 and n.

Result:
HOLCHR(HCONST,i) will return c i, stored in Al or 1H
format.

,.

-23-

2.6. INTEGER FUNCTION LRS (IVAL, ICOUNT)
- - INEGER FUNCTION LLS (1VAL, ICOUNT)

LRS and LLS return the logical shift (end-off, zero-
fill), right and left respectively, of ICQUNT binary
positions of the value, IVAL.

-24-

Appendix B:

Machine Dependencies in the FSCAN 2 ct: code interpreter.

The following machine dependent primitives are

required:

* 1. INTEGER FUNCTION INTGER (CHAR)

2. INTEGER FUNCTION CHRCTR (INT)

3. INTEGER FUNCTION DIG (CHAR)

4. INTEGER FUNCTION LRS (IVAL, ICOUNT)

5. INTEGER FUNCTION LLS (IVAL, ICOUNT)

These routines are described in Appendix A.

-25-

Appendix C
Syntax of FSCAN programs

PROGRAM-> 'TOKENS' TERMINAL+ SCANNER '.'

SCANNER
-> 'SCANNER' GOAL SYMBOL '-'

(RULE ';')+ 'END' GOAL SYMBOL

RULE
-7 NONTERMINAL ('->' REGEXPRN ('=>' ACTION)?)+
-> SCANNER

REGEXPRN -7 REGTERM // '/'

REG TERM -> REG PHRASE+

REG PHRASE -> REGFACTOR ('//' REG FACTOR)?

REG FACTOR
-> REG PRIMARY ('*'/'+I/'?')?

-7 'NOT' REGPRIMARY

REG PRIMARY
-> '(' REG EXPRN? ')'
-7 NONTERMINAL // 'ELSE'
-7 NONTERMINAL '**' EXPONENT
-7 TERMINAL

ACTION
-7 TERMINAL SCREENER?
-7 SCREENER

SCREENER
-> '(' NONTERMINAL ')'

EXPONENT
-7 INTEGER
-> (INTEGER
-) () ;

INTEGER -> NONTERMINAL / '<INTEGER>'

GOALSYMBOL -> '<NAME>'

NONTERMINAL -> '<NAME' ;

SCREENER -> '<NAME>'

TERMINAL -> '<KEPTSTRING>' / '<DELETEDSTRING>'

L.I

P 4

